
44j~

- i
~4 10

I' Q

Wk r7S~f~fNt4

0K
- 4' lt 4

.At .t'

4--Q

to Aa l

A REAL-TIME SIMULATOR OF A TURBOFAN ENGINE

Jonathan S. Litt n For

Propulsion Directorate
U.S. Army Aviation Research and Technology Activity - AVSCOM tJ'

Lewis Research Center ... , ed 0
Cleveland, Ohio 44135 Justificati

and
Distribution/

John C. DeLaat and Walter C. Merrill Availability Coes
National Aeronautics and Space Administratio, --

Lewis Research Center Aao

Cleveland, Ohio 44135 Diat Speoia1 k.

SUMMARY

A real-time digital simulator of a Pratt and Whitney F1O0 engine has been
developed for real-time code verification and for actuator diagnosis during
full-scale engine testing. This self-contained unit can operate in an open-
loop stand-alone mode or as part of a closed-loop control system. It can also
be used for control system design and development. Tests conducted in conjunc-

ttion with the NASA Advanced Detection, Isolation, and Accommodation program
LO show that the simulator is a valuable tool for real-time code verification and

as a real-time actuator simulator for actuator fault diagnosis. Although cur-
rently a small perturbation model, advances in microprocessor hardware should
allow the simulator to evolve into a real-time, full-envelope, full engine

INTRODUCTION

The FOD engine simulator was designed to support the Advanced Detection
Isolation and Accommodation (ADIA) F1O0 engine test. The objective of the ADIA
engine test was to demonstrate the application of analytical redundancy to the
detection, isolation, and accommodation of engine sensor failures (ref. 1).
That is, to show that the engine can continue to be controlled accurately -
even during transients - with one or more of the engine sensors giving false
readings. The objective of this engine test was also to demonstrate that the
ADIA software works on a real engine and is, therefore, reliable and useful in
a real environment. This software had already been successfully tested on a
hybrid computer simulation of the engine (ref. 2). Due to the usual uncertain-
ties associated with a full scale engine test, it was determined that should
changes to the control computer's software be necessary, a simulation of the
engine would be required for software verification. The simulator which has
been developed is a portable box which could be taken into the Propulsion Sys-
tems Laboratory (PSL) to verify any changes in the control interface and moni-
toring (CIM) unit's (ref. 3) software before the CIM unit was used to control
the engine. The simulator was installed in the PSL as shown in figure 1.
Swapping a patch panel allows the CIM unit to control either the engine or the
simulator. This change is completely transparent to the CIM unit. This tech-
nique minimizes risk to the engine which might otherwise occur if the control-
ler's software contains a serious error.

"as" ,,,rmisu Mnim*&

The F100 engine is a high performance, twin-spool, low by-pass ratio,
turbofan engine. Figure 2 shows the locations of the engine inputs which are
defined in table I. Figure 3 shows the locations of the engine sensors defined,
along with the other simulator outputs, in table II.

The simulator is based upon a HYTESS-like model (refs. 4 and 5) of the FlO0
engine without augmentation (afterburning). HYTESS is a simplified FORTRAN sim-
ulation of a generalized turbofan engine. To create the simulator, the original
HYTESS code was revised to incorporate F1O0 specific parameters. Additionally,
the executive was adapted from that of the ADIA code (ref. 6) which executes in
the CIM unit.

This report describes the design and implementation of the F100 real-time
portable engine simulator. The report discusses the simplified engine model
and the actuator and sensor models used in the simulator. Next, the design of
the microcomputer implementation, including the hardware and software design
details, is described. A user's manual is included with step by step instruc-
tions of how to use the simulator. Performance comparisons with the real
engine are presented. Finally, recommendations for future work are given.

MODEL

The original full nonlinear simulation of the F100 engine is a 13 000 line
FORTRAN program. It incorporates detailed descriptions of both steady-state
and dynamic engine operation throughout the entire flight envelope. This simu-
lation very accurately reproduces the engine's performance but requires very
large amounts of digital computer memory and processing time. The HYTESS turbo-
fan engine simulation was developed to provide a structurally simpler alterna-
tive to engine simulation and thus reduce computer storage and processing
requirements.

Since the main objective of the simulator is real-time execution, an FlO0
engine simulation with a HYTESS-like structure was used. The HYTESS-like model
enables much more efficient calculation of the engine dynamics than the full
nonlinear model. The penalty for this efficiency is (1) a small loss in accu-
racy and (2) the relationships between physical elements of the engine are
lost.

The HYTESS-like model is set up in state space form using the vector dif-
ferential equations

- f(x,u,O)
(1)

y = g(x,u,')

where x is the vector of intermediate engine variables or state variables,
k is the derivative of x with respect to time, u is the vector of control
inputs, 0 is the vector of environmental conditions, and y is the vector of
engine outputs. Clearly, at steady-state points,

x = f(xb,ub, b) = 0
(2)

Yb = g(xb,ub,4b)

2

where the subscript b denotes a steady-state point on the operating line
known as a base point. In other words, selecting Yb and Ob vectors deter-
mines steady-state xb and ub vectors such that the quadruple (xb,Yb,ub,$b)
satisfies equation (2). Typical base points representative of the entire
flight envelope at a power lever angle of 83° are shown in figure 4.

Generally, state-space equations of a system linearized about the operat-
ing point (xb,ub,Yb) are of the form

= F(x - xb) + G(u - ub)
(3)

Y = Yb + H(x - xb) + D(u - ub)

where F, G, H, and 0 are system matrices of the appropriate dimensions. The
full nonlinear FlOO model was linearized at each base point using perturbation
techniques. Thus, the state-space model is accu.ate in the neighborhood of a
base point. The actual equations used in the model are of the form

x = F(y,)(x - xss]

y = yb(y,$) + H(y,4)(x - xb(Y,()] + D(y,$)[u - ub(Y,C)] (4)

xss = xb(Y,O) - F-IG(y,$)(u - Ub(YA)]

where the subscript ss denotes a steady-state point near a base point. This
formulation was used to separate the dynamic and steady-state effects that the
system matrix parameters have on the model outputs. It is clear that the equa-
tions for y in equations (3) and (4) are equivalent. To show that the equa-
tions for x are also the same, the equation for Xss must be substituted
into the equation for x in equation (4) as follows:

= F(y,$)[x - xss]

- F(y,4)[x - (xb(Y,C) - F-IG(y,O)Cu - ub(Y,0)]}]

- F(y,$)x - F(yA)(xb(Y,1) - F-IG(y,¢)(u - ub(Y,O)]

- F(y,C)x - F(y,)xb(Y,4) + FF-IG(y,4)(u - ub(Y,$)]

- F(yA)[x - xb(YO)] + G(y,¢)[u - ub(Y,)]

Therefore the systems of equations in (3) and (4) are equivalent.

The linearized system is fourth order, in other words the state vector
contains four elements whose derivatives are integrated to evolve the system
in time. These elements represent actual engine variables: fan speed (N),
compressor speed (N2), burner exit slow response temperature, and fan turbine
inl.et slow response temperature. The first two elements are also the first
two engine outputs. Using 109 base points, the original nonlinear simulation
had been linearized to a set of 109 fourth order realizations. In the FOO
model as in HYTESS, the elements of the matrices F, F-IG, H, and D are non-
linear polynomials. These polynomials were determined by a curve-fitting algo-
rithm used to regress each matrix element upon elements of y and P or upon
elementary functions of y and . Thus the polynomial matrices approximate

3

the data points, i.e., they approximate the system matrices determined by the
use of perturbational techniques at each base point. Therefore, at each point
in the envelope, the polynomials need only be evaluated to determine the system
matrices. The definitions of these polynomials appear in reference 7.

The actuators and sensors are, for the most part, modeled as first-order
lags with a small dead zone or other small nonlinearity included. In general,
the nonlinearities are added after the lags are evaluated. This allows the
sensor and actuator models to be evolved using closed-form equations. These
equations are the standard zero-order hold z-transform solution of a linear
first-order equation. Specifically,

y((k+l]T) = u(kT) - (u(kT) - y(kT)]e-T /-

where T is the time step, u(kT) is the input to the lag at time kT, y(kT)
is the output of the lag at time kT, and x is the time constant of the lag.
In some cases the output of this linear model is altered to incorporate a non-
linearity by, for instance, setting it equal to zero if its magnitude is less
than some relatively small value. The time constants used are similar to those
used on the hybrid simulation and are very close to those of the real instru-
mentation being modeled.

IMPLEMENTATION

The simulator consists of a rack-mountable microcomputer chassis, a dual
floppy disk drive unit, and a CRT terminal. The microcomputer chassis has nine
Multibus/IEEE 796 compatible expansion slots and a power supply. The chassis
contains the five boards shown in figure 5. The simulator software executes on
an INTEL 86/30 single board computer (ref. 8) with an 8086 microprocessor, an
8087 floating point coprocessor, and 256 Kb of random access memory. Table III
lists the jumper connections used on the 86/30 board. A Zendex ZX-200A single
board disk controller (ref. 9) is included to communicate with the disk drives.
A data translation DT 1742-32 DI 32 channel, differential input A/D converter
(ref. 10) accepts the analog control signals from the controller. Finally,
there are two data translation DT 1842-8-V 8 channel D/A boards (ref. 10) which
convert all of the simulated outputs to analog voltages. Table IV lists the
pin connections from the D/A boards for each output variable.

The simulator software consists of 21 routines, 11 in FORTRAN and 10 in
8086 and 8087 assembly language (ref. 11). In addition, the simulation uses
functions and utilities contained In four libraries. The routines share varia-
bles through common blocks of memory. These common blocks are listed in
table V and their contents are described in table VI.

For proper stability and accuracy a good rule of thumb is that a numerical
(Euler) integration time of not more than one quarter the control interval
should be used in the simulation. Use of this rule will reduce the interaction
between the simulation and the control by reducing any phase shift due to time
delays in the simulation. The ADIA control interval was 40 msec. Thus a simu-
lator integration time of 10 msec was the goal. As a full envelope simulation,
the minimum achievable update time (integration time) for the simulation was
approximately 40 msec or four times the desired interval. To overcome this
problem, a drastic reduction in the cycle time of the algorithm was required.

4

It was possible to determine the execution time for each major subroutine.
Most of the FORTRAN code had already been optimized (ref. 12) so the execution
time for each routine was essentially the minimum possible. Several alterna-
tive solutions to the execution time problem were considered. These included
using a faster processor, putting the simulation on multiple computers (paral-
lel processing), and/or modifying the structure of the software. To avoid hav-
ing to change the microcomputer hardware, the simulator software was modified.
The simulator was changed from a full-envelope model to an operating point
model. This was achieved by breaking the simulation into two loops: an
initialization loop and a real-time run loop. Now the base points and the
matrix elements are calculated in nonreal time (these are the longest routines)
and then, in the real-time loop, the system equations are evolved as a set of
linear equations to the new operating condition. This allowed the real-time
loop cycle time to be reduced to 12 msec. The result is a linear model valid
within a small region about a given operating point. This model gives excel-
lent steady-state results and good transient results for small perturbations,
such as small movements of the power lever angle (PLA). However, the model
will not perform accurately for large perturbations such as large PLA
movements.

Description of Modes

The simulation can operate in five different modes depending upon the
application. The modes are: initialization/run, PSL/hybrid, calibration,
open-loop/closed-loop, and actuators only. These modes are controlled by soft-
ware switches described in table VII.

Initialization/run. - In the initialization mode, the simulator initial-
izes variables to their desired steady-state operating point values. Initial-
ized variables include the engine base points and the open-loop setpoints. In
the run mode, the simulation enters the real-time loop. Here the state equa-
tions are evolved from the previous operating point to the desired operating
point using Euler's method for numerical integration. These two modes are a
consequence of the fact that the simulation is not fast enough to accurately
model the whole flight envelope dynamically in real time.

Propulsion system lab (PSL)/hybrid. - The PSL mode scales the control sig-
nals and alters the simulator outputs to correspond to those of the engine in
the PSL. Initially the inputs and outputs of the simulator were scaled identi-
cally to the inputs and outputs of the F1O0 Hybrid Simulation. These were all
±10 V, straight line representations of the engine inputs and outputs. How-
ever, the actual engine input and output devices consist of linear potentiome-
ters, resolvers, thermocouples, flowmeters, and electro-hydraulic actuators.
These devices typically do not accept or produce ±10 V, linear signals. Thus,
while the system was in the PSL, the scaling for the control inputs from the
CIM unit to the engine simulator had to be mapped to the equivalent scaling for
the hybrid simulation. Likewise, the scaling for the outputs of the simulator's
sensors had to be mapped to the equivalent scaling values for the actual engine
sensors so the CIM unit received the same values the engine sensors would
produce. For some variables the difference between the hybrid and the PSL mode
was simply a different scale factor. In the nonlinear cases the PSL variable

5

had to be mapped though a look-up table or a polynomial curve in addition to
being scaled. These curves and polynomials were determined experimentally dur-
ing the engine test calibration procedure.

Calibration. - The calibration mode is used to test the input/output vari-
able mappings. Once a map has been determined and implemented, it must be val-
idated with the simulation and controller. The calibration mode allows the
user to bypass the system evolution subroutines, independently set a variable
to an intermediate value in engineering units, and examine the corresponding
output value. In the same way, the simulator can receive analog inputs and
the user can examine these values in engineering units once they have gone
through conversion. Using this method, the user can determine if the values
are being scaled correctly.

Closed loop/open loop. - In the closed-loop mode the simulator receives
the control signals from an outside source such as the CIM unit. In the open-
loop mode the simulator uses base point values stored in its memory for the
control signals.

Actuator. - The actuator mode is used to simulate only the engine actua-
tors. To ensure that the real actuators are all working correctly and since
they are quite simple to model accurately, the simulator can be run in parallel
with the engine and the simulated and actual actuator feedback values compared.
The only difference between the actuator mode and the run mode of the simulator
is that in the actuator mode TT2, the only independent variable which the actu-
ators require beside the control signals, is obtained as input from the facil-
ity (Propulsion Systems Laboratory) rather than calculated by the simulator.
Since no other information is required and the actuator calculations are fairly
simple and accurate, the simulator is used as a full envelope real-time simula-
tor for the actuators. The engine model outputs are not used in this mode
since the base points are not recalculated at each operating point.

The modes are all defined by software switches which can be toggled using
MINDS (ref. 13). MINDS is a program used to examine and to set values of mem-
ory locations. To the user, MINDS looks like an interpreter. The user types
in commands and MINDS carries them out. MINDS executes in the background and
is interrupted by the timer at the beginning of each initialization or run-time
cycle (fig. 6). Even though it runs for only about 17 percent of the time in
the run-time loop, to the user it appears to be running continuously. MINDS
can be used to examine and/or set the software mode switches and also to
examine and set any parameter within the simulation. In addition, MINDS can
be used to collect transient data, that is, to examine memory locations period-
ically over time, and to display that information graphically. Due to memory
constraints in the simulator, the transient data capability of MINDS was not
included.

The simulator uses the CP/M-86 disk operating system for loading the simu-
lator program from disk, for saving MINDS data to disk, and for communicating
with the user terminal. This operating system has a limitation that the total
,pace for code and data may not be more than 64 Kb. The total memory required
for the simulator, including the reduced capability version of MINDS, is about
50 Kb, approximately two-thirds of which is code and one-third is data.

6

PROGRAM [XECUTION

After the system is booted, the program can be executed by typing the name
of the disk drive where the program disk is located followed by a colon and the
name of the program. When the RETURN key is pressed, the executable code is
loaded from disk and executed.

The program starts execution in the executive (fig. 7). The executive
initializes the update intervals, sets up the memory appropriately and takes
care of the administrative details. Then it executes two routines, MSET
(fig. 8) and MTRXST (fig. 9). They are routines for initialization of con-
stants such as time constants, the exponents associated with each time con-
stant, and the initial conditions. Once the program setup is complete it is
not repeated since the setup information will never change. Following setup,
the program enters the initialization loop by setting the interrupt timer
(fig. 6). This loop does not have a real-time cycle constraint (it has no time
dependency) but it repeats every 50 msec. Here it executes INLET (fig. 10)
which calculates the ambient conditions based on the altitude and Mach number.
Then it goes to EMODEL (fig. 11) which determines the base points and matrix
elements by evaluating polynomials whose coefficients are functions of the
ambient conditions. The scheduled values of engine variables are calculated
in the subroutines RPFAND (fig. 12) and RPLIMD (fig. 13) which are called from
EMODEL. The operating point is requested using MINDS. The operating point is
automatically initialized to sea-level static, standard day conditions, 830
PLA. Base point values at this condition are also stored as the initial con-
trol values for that operating point in the open loop mode. Any extra time in
this loop is used by MINDS to accept inputs from the user. He can change alti-
tude and Mach number and the next time through the loop everything is recalcu-
lated for the new conditions. Since everything in the initialization loop is
calculated directly, the loop need only be executed once after a change is made
for the values to be correct. The user can also set the switch to go from the
Initialization loop to the run loop while in MINDS. Figure 14 shows the pro-
gram flow as the initialization/run switch, RLOOP, is set and reset. The
update interval is short enough to essentially guarantee that the loop will be
executed at least once after the conditions are changed to obtain the correct
values before the switch can be set. The program is ready to be used interac-
tively once the MINDS prompt (>) appears.

Setting the appropriate software switch puts the program into the real-
time mode. The run loop consists of the dynamic routines. This loop has an
update interval of 12 msec and during that time the control input routine,
actuator routine, the system evolution routine (numerical integration), and
the output signal routine all execute. The first section receives the control
signals from the CIM unit and converts the scaled integers to real numbers.
ACTUAT (fig. 15) takes the real commanded values and evolves the actuator
models to their value at the current time step. This output is used by EVOLVE
(fig. 16) to integrate the differential equations describing the engine itself.
Over time, the numerical integration will bring the simulation from its previ-
ous steady-state point up to the new steady-state point with a linear, non-
realistic transient. The new steady-state point is, however, accurate and
realistic. After EVOLVE executes, the engine outputs, actuator feedbacks, PLA,
and the ambient conditions are converted to scaled integers and sent via D/A
converters to the CIM unit. The I/O sections are part of the multiplexer
Interrupt service routine section of the executive (fig. 17). Any spare time

7

is used by the message generation routine or MINDS. The message generation
routine takes priority over MINDS if it needs to execute but it is only used
to print out error messages. A more in-depth dascription of the simulator's
operation is given in appendix A.

Many of the routines listed above call their own subroutines which do
table lookups or some other type of calculation. The relationships are shown
in figure 18. A complete list of the routines with a description of each
appears in appendix B.

Exception Handling

There are three noncatastrophic exceptions which, if they occur, will
cause incorrect operation of the simulator. They are: (1) floating point,
(2) divide by zero, and (3) update failure. The first two produce an interrupt
and are handled by interrupt service routines (figs. 19 and 20). Update fail-
ures are detected by a flag check routine within the timer interrupt service
routine (fig. 21). When the timer signaling the start of the real-time run
loop interrupts the simulation, the service routine checks the update failure
flag. Since the flag is reset near the end of the multiplexer interrupt serv-
ice routine (fig. 17), a reset update failure flag indicates no problem. How-
ever, if the flag is still set at the start of the timer service routine, it
means that the cycle was unable to finish the previous time through the loop
and an update failure is declared.

One of the results of these interrupt service routines is to give the user
an indication that the error took place by printing a message to the user ter-
minal. This printing is done in the time remaining at the end of the real-time
loop. Printing a message is a slow process and may take several cycles of the
run loop to complete. Because more than one error might occur in a single
cycle and each takes so long to print, a data structure is used to store the
starting addresses of each error's corresponding message. Up to 15 addresses
can be held in this circular queue. Figure 22 shows the way starting addresses
of messages are saved. It is a more detailed version of the boxed area in
figures 19 to 21.

After the digital-to-analog conversion of the simulator outputs in the
run loop, the program checks the error message queue. If no printing is in
progress and a message is waiting to be printed, the program will initiate
printing the message at the head of the queue. Otherwise the program returns
to the task which was interrupted by the current cycle of the run loop - either
MINDS or printing a message. The message genenation code, MESGEN (fig. 23), is
actually a portion of the multiplexer interrupt routine and is shown in the
boxed region of figure 17.

Figure 24 demonstrates the way the pointers move around the queue when
two errors occur in rapid succession and are then printed out to the terminal
device. The operation of the total noncatastrophic error handling system can
be understood by tracing through the flowcharts in figures 17 and 19 to 23.

In general, the user would like to know the cause of any errors which
occur. To help him determine what happened, both the divide interrupt service
routine and the 8087 exception service routine save the instruction pointer and

8

the code segment of the instruction after which the error occurred. These val-
ues can be examined via MINDS to determine which line of code prompted the
error. In addition, the 8087 exception handler stores the 8087 status word and
the address of the 8087 environment. Since this saved information would be
overwritten the next time a similar error occurs, these two service routines
each set a latch to prevent new information from being stored. After the data
have been examined, the user can use MINDS to reset the latches in preparation
for the next error should one occur.

The only catastrophic error which is handled by an interrupt is a system
bus timeout error (fig. 25). This error usually means that program control is
lost and that execution has ceased. The timeout interrupt brings control to
the service routine where it remains until the routine has executed and control
is returned to the previously running instruction address. If this error
occurs, a message is printed out immediately in the service routine. The mes-
sage contains the location of the instruction pointer and code segment of the
calling instruction which failed. This can be used to aid in reconstructing
what caused the timeout.

A list of the messages which can be printed appears in table VIII.

SIMULATION RESULTS

The steady-state accuracy of the model is excellent. This is because the
HYTESS-like model was based on the steady-state performance of a turbofan
engine and the base point calculations which define steady-state performance in
HYTESS were derived from steady-state data. Also, the steady-state and tran-
sient accuracies of the actuator simulation are excellent. The full engine
transient performance for small perturbations about a given operating point is
also quite good. The full engine large perturbation transient performance is
quite limited since the engine is modeled as a linear system in the run loop.

CONCLUSIONS

Tests conducted in conjunction with the FlO0 Hybrid Simulation evaluation
of the ADIA algorithm showed that the simulator works well as a real-time,
steady-state and small perturbation substitute for the full hybrid, nonlinear
simulation. The full-scale engine demonstration of the ADIA proved the capa-
bilities of the simulator as a real-time code verifier and as a full envelope,
real-time actuator simulator for actuator fault detection. This real-time,
portable simulator capability will be valuable in future engine tests. With
the rapid increases in microprocessor capabilities that have occurred since the
FlO0 simulator was built, it is conceivable that full envelope, full engine
simulation can now be achieved in real-time.

APPENDIX A

USER'S MANUAL FOR F100 ENGINE SIMULATOR

1. Turn on all of the equipment, i.e., the chassis, the disk drive, and
the terminal.

2. Insert the system disk into drive a: and the program disk Into drive
b:.

3. Boot the simulator by pressing the RESET button on the chassis.

4. When the simulator has booted, load and start the program by typing
b:(program-name)(RETURN).

5. This causes the program to start executing. It goes through the one-
time initialization routines, MSET and MTRXST, and enters the initialization
loop containing INLET and EMOCEL. In the spare time in this loop, MINDS runs,
allowing the values of variables and flags to be changed. The MINDS variable
definitions must either be entered by hand or loaded from disk. Choose the
mode in which the program is to be run. This can be changed at any time very
simply. The default mode is initialization/hybrid/open-loop. Each switch
(flag) can be changed independently.

6. Altitude and Mach number, ALT and XMO respectively, can be changed
through MINDS. They are both initialized to 0.0, i.e., sea-level static condi-
tions. Power lever angle is initialized to 830. The ambient conditions, which
are all calculated in INLET, depend on these values. The ambient conditions
are initialized to standard day conditions, i.e., about 14.7 psi and about
590 F. For changes of these two variables to have any affect, the program must
go through the initialization loop one time. The base points are calculated
here and their values are stored for the additional purpose of being the set-
points in the open-loop mode.

7. Setting the value of RLOOP to I puts the simulation into the real-time
run loop. The routines take about 10 msec to run leaving approximately 2 msec
for MINDS provided there are no error messages to be printed. In this mode,
MINDS can be used to check the value of variables and to switch modes.

8. Setting RLOOP to 0 again returns the program to the initialization
loop but leaves the value of every variable unchanged. Thus a transient can
be stopped and restarted (if the program is in open-loop mode) or the operating
conditions can be altered to move the system to another operating point.

9. To stop the simulation, reboot the system by pressing the RESET button
on the chassis with the system disk in drive a:.

10

APPENDIX B

ROUTINE DESCRIPTION

ACTUAT This FORTRAN subroutine simulates the actuator dynamics and lags each
one to approximate the sensor dynamics on each actuator's output.
The scheduled value of nozzle area computed In RPLIMD is used in the
nozzle area simulation except in the actuator mode where the sche-
duled value of nozzle area is calculated based on TT2 provided as an
analog input to the simulation.

ALTABL This FORTRAN subroutine takes the altitude and returns the 6 and E
corresponding to the ambient conditions.

CIMDAC This assembly language program takes a 16-bit scaled integer and con-
verts the twelve most significant bits to analog for output over a
specified digital-to-analog converter channel.

EMODEL This FORTRAN subroutine calculates ub , xb, and Yb from the refer-
ence point schedules and computes the elements of the F, F-IG, H,
and D matrices by evaluating functions of the ambient conditions
and reference point schedules.

EVOLVE This FORTRAN subroutine uses Euler integration to compute the current
values of the engine outputs. It also simulates the output sensor
dynamics by lagging each output.

EXEC This assembly language program is the main routine for the FIO0 simu-
lation. it calls the other major subroutines and contains the inter-
rupt service routines.

FUN1 This assembly language program does a table look-up and interpolation
on a function of one variable.

FUN2 This assembly language program does a table look-up and interpolation
on two functions simultaneously where the functions use the same
independent variable and the values of the two functions are known
for the same values of the independent variable.

FUN3 This assembly language program does a table look-up and interpolation
on two functions simultaneously where the functions use the same
independent variable and the values of the two functions are known
for different values of the independent variable.

HFTA This FORTRAN function returns enthalpy as a function of temperature.

INLET This FORTRAN subroutine calculates the inlet conditions of the
engine, TT2 and PT2, and the compressor inlet temperature, TT25. The
dynamics of the temperature and pressure sensors are included for
completeness but are multiplied by zero. The sensor dynamics are not
used because the simulation is a steady-state model and is only accu-
rate at the specified operating points, not between them.

11

MESSAGE This routine, part of the MINDS Library, prints an ASCII string on
the console.

MINDS Microcomputer INteractive Data System is a program used to examine
and change memory locations in 8086-based systems. Because of memory
constraints, a reduced capability version of MINDS, SMINDS, was used.
For more information, see reference 13.

MSET This FORTRAN subroutine initializes variables such as ambient condi-
tions, engine states, engine outputs, actuator outputs, all both
unlagged and lagged to simulate sensed values, time constants, asso-
ciated exponentials, and integration step size.

MTRXST This FORTRAN subroutine initializes the elements of the H and D
matrices which remain constant at all operating conditions. The flag
DFLAG is initialized to 0. This flag is used in EMODEL to indicate
whether or not to recalculate several of the matrix elements. The
flag's value must be changed using MINDS.

NEFG This assembly language routine does table look-up and interpolation

on a function of one variable using the slope/intercept method.

PRCMB This FORTRAN subroutine calculates properties of combustion.

PVAL This FORTRAN function evaluates a polynomial passed as an argument to
it.

RFUNIS This assembly language program interpolates between points in a
lookup table. It works with small-model programs, i.e., the code
sections of all modules are combined and allocated within one seg-
ment. The program is described in more detail in reference 14.

RPFAND This assembly language program calculates reference point schedules
for the engine variables. The first time through, the routine starts
at the label RPFANINT which is slightly earlier in the code than
RPFAND. This first part of the code initializes pointers which are
used in successive calls of RPFAND.

RPLIMD This assembly language program is the continuation of RPFAND. It
calculates more reference point schedules and limits for the sche-
duled values. The first time through, the routine starts at the
label RPLIMINT which is slightly earlier in the code than RPLIMD.
This first part of the code initializes pointers which are used in
successive calls of RPLIMD.

TFHA This '"ORTRAN function returns temperature as a function of enthalpy.

12

REFERENCES

1. Merrill, W.C., et al.. Advanced Detection, Isolation, and Accommodation
of Sensor Failures - Engine Demonstration. NASA TP-2836, 1988.

2. Merrill, W.C.; DeLaat, J.C.; and Bruton, W.M.: Advanced Detection,
Isolation, and Accommodation of Sensor Failures - Real-Time Evaluation.
NASA TP-2740, 1987.

3. DeLaat, J.C.; and Soeder, J.F.: Design of a Microprocessor-Based Control,
Interface and Monitoring (CIM) Unit for Turbine Engine Controls Research.
NASA TM-83433, 1983.

4. Merrill, W.C., et. al.: HYTESS - A Hypothetical Turbofan Engine
Simplified Simulation. NASA TM-83561, 1984.

5. Merrill, W.C.: HYTESS II - A Hypothetical Turbofan Engine Simplified
Simulation With Multivariable Control and Sensor Analytical Redundancy.
NASA TM-87344, 1986.

6. DeLaat, J.C.; and Merrill, W.C.: A Real-Time Implementation of an
Advanced Sensor Failure Detection, Isolation, and Accommodation
Algorithm. AIAA Paper 84-0569, Jan. 1984 (NASA TM-83553).

7. Beattie, E.C., et al.: Sensor Failure Detection For Jet Engines.
(PWA-5891-18, Pratt and Whitney Aircraft; NASA Contract NAS3-23282) NASA
CR-168190, 1983.

8' iSBC 86/14 and iSBC 86130 Single Board Computer Hardware Reference
Manual. Order Number: 144044-001, Intel Corp., Santa Clara, CA, 1982.

9. ZX-200A Single Board Disk Controller. Publication Number-98-200A, Zendex
Corp., Dublin, CA, 1983.

10. User Manual for DT1741 SERIES (DT1741, DT1742, DT1744, DT1751, DT1754,
DT1841, DT1842, DT1843. Analog Input, Analog Output and Analog I/O
Systems), Document UM-00048-3 (Ref. DTI-UM-1740-3), Data Translation,
Inc., Marlboro, MA.

11. ASM86 Language Reference Manual. Order Number: 121703-002, Intel Corp.,
Santa Clara, CA, 1982.

12. DeLaat, J.C.: A Real-Time FORTRAN Implementation of a Sensor Failure
Detection, Isolation and Accommodation Algorithm. Proceedings of the 1984
American Control Conference, Vol. 1, IEEE, 1984, pp. 572-573.

13. Soeder, J.F.: MINDS - A Microcomputer Interactive Data System for
8086-Based Controllers. NASA TP-2378, 1985.

14. Mackin, M.A.; and Soeder, J.F.: Floating-Point Function Generation
Routines for 16-Bit Microcomputers. NASA TM-83783, 1984.

13

TABLE I. - SIMULATOR INPUTS

Input channel Variable Description
number

8 WFCOM Commanded main combustor fuel flow (WF)
9 AJCOM Commanded exhaust nozzle area (AJ)

10 CIVVCM Commanded fan inlet variable vane angle (CIVV)
11 RCWCM Commanded rear compressor variable vane angle (RCVV)
12 BLCCM Commanded compressor bleed (BL) (bleed is used open-loop)
13 TT2ACT Fan inlet temperature (used only in actuator mode)

TABLE II. - SIMULATOR OUTPUTS

Output channel Variable Description
number

1 Timing DAC Variable-height step output used to determine the running time
of each subroutine

2 WFFBS Sensed main combustor fuel flow (WF)
3 AJS Sensed exhaust nozzle area (AJ)
4 CIWS Sensed fan inlet variable vane angle (CIVV)
5 RCVVS Sensed rear compressor variable vane angle (RCVV)
6 BLFBS Sensed compressor bleed (BL) (not used)
7 POS Ambient (static) pressure (PO)
8 PT2 Fan inlet (total) pressure
9 TT2 Fan inlet temperature

10 TT25 Compressor inlet temperature
11 Nl Sensed fan speed
12 N2 Sensed compressor speed
13 PT4 Sensed combustor pressure
14 PT6 Sensed exhaust nozzle pressure
15 FTIT Sensed fan turbine inlet temperature
16 PLA Power lever angle

14

TABLE III. - INTEL 86/30 BOARD HARDWARE CONFIGURATION

86/30 Jumper Description
connections

7-11 2 wait states on EPROM access
13-14 2 wait states on I/O access
38-39 Timeout enabled
108-109 2716 select
111-112 2716 select
118-119 128K total ram on board
144-145 Ground NMI
151-152 Multibus interrupt 5/ to 8259 IRS
158-147 Timer 0 interrupt to 8259 IR2
175-176 1.23 MHz clock to CTRO - out
178-179 1.23 MHz clock to CTR2
184-185 153.6 KHZ clock to CTR1
190-194 8753 out 2 to 8251 TXC
191-195 8753 out 2 to 8251 RXC
205-207 BCLK to Multibus
208-209 CCLK to Multibus
210-211 BPRO to Multibus - out
215-220 Out 1
216-221 Out Megabyte 0 (lowest) selected
217-222 Out
219-224 Out
225 n. c.
226 n. c. Off board address O-1FFFFH
227 n. c. (0 lowest address)
230-231 Out t
232-233 In 128 K, 01FFFFH upper address
240-241 Out
234-235 Out All RAM available to bus, 128 K
236-237 Out
33-34 Out Nonbus vectored interrupts
123-124-125 Out 2 K x 8 EPROM
189-193 DTR to DSR
202-203 ANYRQUEST line
213-212 CBEG line to ground
184-175 153.6 KHz clk to CTRO
133-165 Timeout interrupt to 8259 IRO
134-141 Timeout 1 int. to 8259 IR7 (for MINDS)
155-166 MINT to 8259 IR6

TABLE IV. - D/A BOARD PIN CONNECTIONS

Signal DAC Board Channel Pin number Pin number Comments
number high low

Timing DAC 1 1 17 18
WFFBS 2 19 20
AJS 3 21 22
CIWS 4 23 24
RCVVS 5 25 26
BLFBS 6 27 28 Not used
P0S 7 29 30
PT2 8 31 32
TT2 2 1 17 18
TT25 2 19 20
SNFSEN 3 21 22 NI sensed
SNCSEN 4 23 24 N2 sensed
PT4 5 25 26
PT6 6 27 28
FTIT 7 29 30
PLA 8 31 32

15

TABLE V. - ROUTINES AND ASSOCIATED COMMON BLOCKS

Common Routine

ACTUAT EVOLVE EMODEL INLET MSET MTRXST RPFAND RPLIMO EXEC

XANDZ X X X X

FTICFC X X

ACTOUT X X X X

MVCSHT X X X X

AMBCND X X X X

FTSAV X X

MATRIX X X X

BASEV X X X x

FILVAR X

EXPS X X X X

JLCMN X X X X X X X

RAMREC X X

CONTROL X

TABLE VI. - CONTENTS OF COMMON BLOCKS

Common Contents

XANDZ Engine states, engine outputs, sensed engine outputs

FTICFC Fan turbine inlet temperature factors used to model FTIT sensor dynamics

ACTOUT Actuator outputs, sensed actuator outputs

MVCSHT Integration time step

AMBCND Sensed ambient conditions

FTSAV Slow and fast lag values used to model FTIT sensor dynamics

MATRIX Matrices F, H, D, and F-IG; and flag, DFLAG

BASEV Base points for control inputs, engine states, and engine outputs

FILVAR Intermediate variables used in system evolution routine

EXPS Exponentials for all of the actuator and sensor dynamics

JLCMN General variables that do not fit in another common

RAMREC Variables used for ram recovery effect of the inlet

CONTROL The control inputs to the actuators

16

TABLE VII. - SOFTWARE SWITCHES FOR MODE CHANGES

Software Description
switch

RLOOP 0, (default) program runs in initialization loop
1, program runs in real-time run loop

PSL = 0, (default) scaling of inputs and outputs corresponds to that
of Hybrid simulation
1, scaling of inputs and outputs corresponds to Propulsion
Systems Laboratory hardware

CLLOOP 0, (default) program runs in open-loop mode, command signals
are taken from memory (the values can be changed using MINDS)
1, program runs in closed-loop mode, analog command signals
are read in through A/D converters

CALIB 0, (default) each routine in run loop is executed fully
1, only the AID converter and D/A converter routines are
executed in the run loop, ACTUAT and EVOLVE are not. Thus the
effect of scale factors for both input and output can be
checked directly using MINDS

ACTSIM 0, (default) scheduled AJ (nozzle area) is proportional to the
steady-state scheduled value calculated in RPLIMD
1, scheduled AJ is calculated as a function of TT2 read in by
the simulation at each control interval. This should only be
used in the actuator simulation mode.

TABLE VIII. - ERROR MESSAGES

Message Description

8086 F-1O0 SIMULATION Sign on message

UPDATE FAILURE OCCURRED Update failure message

DIVIDE INTERRUPT OCCURRED Divide interrupt message

FLOATING POINT EXCEPTION OCCURRED Floating point exception message

SYSTEM BUS TIMEOUT!!!!! Bus timeout message
IP AT XXXX SEGMENT AT XXXX

17

FIWaItE SWILATOR--

TT2 4

I SI

PTCH cmSESO PTC

UNITx FA.LTEs PANELnPSL

PAE18ULTR VR

HIGH-PRESSURE TURBINE -

MAIN COMBEUSTOR -\iLOW-PRESSURE TURBINE

\ ~ AUGMENTOR NOZZLE

L CO1PRES- MAIN COM13USTOR/
INLE So FUEL FLOW (WP)

GUIDE VARIABLE EXHAUST NOZZLEVANES VANES L- COMPRESSOR AREA (Aj)(CIV V) (RCVV) BLEED (BL)

FIgur 2. - F1 00 vwigrn Inputs.

HIGH-PRESSURE TURBINE -

MAIN CMBUSTO LOW-PRESSURE TURBINE

ALJGMENTOR NOZZLE
IN'LET FAN COMPRESSOR\ / .--- *---.

T-T

TT2
FI

Flgure 3. - Fl 00son"sepoints.

19

24

22.9K 11. 2 22.91(1 Z 93 (1

21

192N. 12SK1.

o 16(1. 5 1 2 3 1-12 1 -1.2K/2.3

2 -

0
10. 7K. 8 ILIL0 111175Z

0 0o-- - 11.,K75
9.K1610.KIL 61

9 - &5(I125 .

0.I 05 90 15 2. 2

I(SK

6~~ oANOLOG
5t'6IJ~

P~g . 5 -ng 6e KnltIw5 4 Ke.

K/0

.- IITIALIZATION
*OF VARIABLES

'SET TIMER INTERRUPTTIEETEUT

MATRIX
.' CALCULATION

INITIALIZATION
PHASE

0 7 20 s0 100 1 (masc)

- SET INTEGRATION CYCLE
TIMER INTERRUPT

-READ IN TIEITRRP

PHASE

CALCULA- EVOLUTION

0 1 5 9 10 12 24 1t(mbc)

Figure 6. - Software Unfig diagram.

INTILIE ES REGISTER
FOR INTERRUPTS

SET UP INTERRUPTVETR

SET UP INTERVAL TIMER MODES

SET UP 8259A INITERRUJPT CONTROLLER

INITALIZE DS REGISTER SAVE AREA

RESET UPDATE FAILURE FLAG

INITIALIZE 8087

LOAD START ADDRESS OF SIGN-ON MESSAGE

MESSAGE

Figure 7. - Flow chart for executive routine, EXEC.

21

INITIALIZE VARIABLES AND FLAGS

INTIALIZE TOM CONSTANT FOR LAGS

INITIALIZE ABIENT CONDITIONS

INITIALIZE PLA C ALCULATE TT2, PT1 * TTn, 8 AND 8

Is
MACH NUM8ER YE T25 -fl

INITAUZE ENGINE OUTPUTS N

Tr25-t 2 ()
INITALIZE ENGINE SENSOR OUTPUTS

I I RETURN

INITIALIZE ACTUATOR OUTPUITS

I ~ ~Figure 10..- Fo char for Inlet routine, INLET.

INITIALIZE SENSED ACTUATOR OUTPUTS

INITIALIZE AMBIENT CON011TON SENSOR OUPUTS CALCULATE 8 ANDO0

INITIALIZE aT (INTEGRATION STEP SIZE) CALCULATE VIRTUAL POWER CODE

INITIALIZE ENGINE SENSOR DYNAMICS CONVERT ENVIRONMENTAL VARIABLES TO SCALED INTEGERS

INITIALIZE AMBIENT CONOITON SENSOR DYNAMICSNOTITHYE

INITIALIZE ACTUATOR DYNAMICS
*N

E

RETURN

Fig"S. Wdfzaton rutie, MET.COMPUTE INDEPENDENT VARIABLES FROM AMBIENT CONDITIONS

COMPUTE CORRECTED PARAMETERS FROM SCALED INTEGER
OUTPUTS OF REFERENCE POINT SCHEDULES

INITIAIZE HCOMPUTE BASE POINTS

COMPUTE STATE SPACE MODEL MATRIX ELEMENTS

INITIALIZE DIs
Y7

DLAG CALCULATED D42 AND DS2_

INITIALIZE OFLAG -0
NO

RETURNRETURN]

Fig"r 9. - IMwbi iniltdaton mu* MTRXST. Figure I1i. - Flow chart kw routine ID dete~rmn ode at operating point, EMOOEL.

2?

RPLIMNT SAVE FORTRAN REGISTERS

SET DS TO BEGNNIGOF DATA SEGMENT

wrAuZE POINTERS FOR TABLE LOCKUPS

* RESTORE FORTRAN REGISTERS

RPLIMD SAVE FORTRAN REGISTERS

SET DS TO B3EGMMIN OF DATA SEGMENT

RPFANINT SAVE FORTRAN REGISTERSLOKU T

LOOK UP FTrT
SET OS TO BEGINNING OF DATA SEGMENTI

I I LOOK UP FAN SPEEDwnIALI POINTERS FOR TABLE LOCKUP

DETRE FORTRAN REGISTERS LM iA PE

F -~LIMIT HIGH ROTOR SPEED

I - LMTr BURNER PRESSURE
SET DS TBEINNING OF DATA SEGMENT

COMPUTES 0 SHEULE B18LEED

COMPUTE SCOMPUTE FUEL FLOW AND~ LIMIT

COMPUTE DENSITYI
I I COMPUTE ~w

COMPUTE N2 SCHEDULES
CMUET~

COMPTE T4 SHEDLESCOMPUTE RCVVI SCHEDULE

COMPUTE FAN AIRFLOW

I F - COMPUTE CrWI SCHEDULE

RESTRE ORTAN RGISERSRESTORE FORTRAN REGISTERS

FWUR7NRETURN

F1"r 12.- Flow dwt kv solpa~t wiajailon roudne, RPFAND. F1ur 13. Flow cht for lotpalnt camaon mou**n, RPLIMD.

23

F - sET EXECUTIVE

MTRXST

RLOOP I

RLO.OO --

RI.OOP -0

Flgur 14. - Props 110W.

is YES CAL CULATE -Gu - u b

ACTSM RECALCULATE SCH4EDLED A.J F 1 (

NO ~CALCULATE x- (xb - F'IG(u - UbflF -1

CALCU.LATE AJMAX AND A.JMIN CALTE Fix - Ixb - F 1Glu -U bMl - FF t ~

CALCLATEMAN BURER UEL LOWCALCULATE x(1 + AT)-x(T) U ~T (EULER

CALCULATE POSITION OF REAR COMPRESSOR VARILE VANES CALCULATE x -Xb

CALCULATE POSTION OF MNET GUIDE VANES CALCULATE 10x- X b)

CALCULATE NOZZLE ARCLUATEA
-Ub

C A L C U L A T E B L E E DC
L U A E Y x - X b I + D u - u b y

ADD SENSOR DYNAMICS TO ACTUATOR OUTPUTSADSEORYNMCTONGEOUPS

Folg S. 5- FIyw chart for actuator routine, ACTUAT. Flgure 16. - Flow dwt for systeti evolution routine, EVOLVE.

24

SAVE THE MACHINE STATE

REINSTATE THE DS REGISTER

READ IN 12 lAJx BITS

SHIFT LEFT 4 BITS TO MAKE A FULL 16a BIT NUMBER

STORE SAMPLED DATA

SEND EQI TO 8259A

REENABLE THE INTERRUPTS

RESORE MAH? STT
FlARMN HA4E ONE

YES RN

F i g u r eI 1 7 .R
T FEoT

D A T A f o u t i l x r i e v u t s r v o u i e

No TE SYTEM N Y5

ACTUAT FUNI
CIIMOAC

EMODELRPFAND FUN2

RPLIMI FUN3

NEFG
EVOLVEALTABI

EXE ITA PVAL

PRCMB

LM41NDSMESSAGE

MSET

MTRXST
WUNIS

R F U ISFigure 18. - H lera "c~ of subrou ine ca s.

SAVE MACHINE STATE]I

------------------------------------- S LATCH SET FROM AN-HL YEFQ EUL
PREVIOUSD DE OE-AFUL

IsINERPSCL
THE MATH I E

YS EXCEPTION FLAG MESSAGE QUEUE
SET FROM A PREVIOS FULL N

IERRUPT ?

------------- S NO-----

LQO START ADDRESS OF MESSAGE IN QUEUE Is

GET THE CODE SEGAmr OF THE OFFENDIN INSTRUCTION FULL

SET THE MATH EXCEPTION FLAG LOA MESA EUATNE AOES

SAVE THE ADDRESS O H 8 NIOMN

FSAVE THE 8087 STATUS WORD

CALCULATE THE OFFSET OF THE ADDRESS OF THE OFFENDING SAVE INSTRUCTION
INSTRUCTION PITRADCD

SAVE THE OFFSET AND CODE SEGMENT OF THE INSTRUCTION WHERE OVERFLOW

FCLEAR THE 8087 EXCEPTION

LOAD CONTROL WORD. EXCEPTIONS MASKED

Figure 19. - Fo ctiaf for 8067 exception Interrupt service routine. Figure 20. - Flow chart for divide Interrupt service routine.

26

I~~U RENTT HIERRPWOS

NO RLE 174 RESAR UTIERUPTR

SET REALCOUTIEOEATO

STARTR MACINERESOR

UN11AAS W I ERUPREENE UPDTERESAPTSE

EXCEPT PREISION FATURN UU

F~~gure 2FULLw o ~mrItrup erceruie

?2

GET VALUE (ADDRESS) OF END-OF-OUEUE
POINTER. MESEO

INCREMENT rr BY TWO AND WRAP rr
AROUND MEMORY WHERE QUEUE RESIDES

(2+ MESECO) AF

Is
(2. MESEOG) AF YES

-MESECO ?
IS QUEUE FULL?

NO

STORE STARTING ADDRESS OF ERROR
MESSAGE AT END OF QUEUE

(MESO((2 +MESEOQ)AFD

STORE NEW VALUE OF MESECO1
- (2 + MESEOQ)tAF

RETURN

Figure 22..- Flow ~hr for routine for saving stating address of ero messages.

CLEAR INTERRUPT ENAB3LE FLAG

GET ADDRESS OF BEGINIG OF MESSAGE QUEUE

INCREMENT ADDRESS TO NEXT LOCATION IN QUEUE

STORE NEW ADDRESS OF BEGINNING OF MESSAGE QUEUE

GET ADDRESS OF MESAGE FROM HEAD OF QUEUE

PUSH ADDRESS ON STACK FOR PRINTING ROUTINE

SET MESSAGE-IN-PROGRESS FLAG

SET INTERRUPT ENABLE FLAG

Figure 23. -Flow chart for message generation routine MESGEN.

28

MESSEOQ

MES800~~~~~~

MEB

O -B GN H O~ U U ONE SBO

IWESEOO ~~E - NOOFOLE
PIN E

2.9

LOAD STARTING ADDRESS OF TIMEOUT MESSAGE
i~ o]

I ESSAGE S

GET INSTRUCTION POINTER OF CURRENT INSTRUCTION

i

GET CODE SEGMENT OF CURRENT INSTRUCTION

Figure25.- CONVEhRT o syTEM T SImotIt tsrieru~e

fA

LODSATN3DRSSO0ETO ESG

N A s Report Documentation Page
Spwce Adk'rwrat i

1. Report No. NASA TM-100869 2. Government Accession No. 3. Recipient's Catalog No.

AVSCOM TR-89-C-001
4. Title and Subtitle 5. Report Date

A Real-time Simulator of a Turbofan Engine March 1989

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Jonathan S. Litt, John C. DeLaat. and Walter C. Merrill E-4578

10. Work Unit No.

9. Performing Organization Name and Address

NASA Lewis Research Center 505-62-01
Cleveland, Ohio 44135-3191and 11. Contract or Grant No.
and
Propulsion Directorate
U.S. Army Aviation Research and Technology Activity-AVSCOM

Cleveland, Ohio 44135-3127 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 14. Sponsoring Agency Code

and
U.S. Army Aviation Systems Command
St. Louis, Mo. 63120-1798

15. Supplementary Notes

Jonathan S. Litt, Propulsion Directorate: John C. DeLaat and Walter C. Merrill, NASA Lewis Research Center.

16. Abstract

A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verifica-
tion and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-
loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and
development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation
program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator
simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor
hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Microprocessor; Turbofan engine; Simulator: Unclassified - Unlimited
Real-time; Sensors: Actuators Subject Category 07

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price

Unclassified Unclassified 32 A03

NA FOAM oN OT "For sale by the National Technical Information Service, Springfield, Virginia 22161

